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In an earlier paper (Davey 1978) the first author investigated the linear stability of flow 
in a straight pipe whose cross-section was an ellipse, of small ellipticity e, by regarding 
the flow as a perturbation of Poiseuille flow in a circular pipe. That paper contained 
some serious errors which we correct herein. We show analytically that for the most 
important mode II = 1, for which the circular problem has a double eigenvalue c, as the 
‘swirl’ can be in either direction, the ellipticity splits the double eigenvalue into two 
separate eigenvalues c, k e2c12, to leading order, when the cross-sectional area of the 
pipe is kept fixed. The imaginary part of c,, is non-zero and so the ellipticity always 
makes the flow less stable. This specific problem is generic to a much wider class of fluid 
dynamical problems which are made less stable when the symmetry group of the 
dynamical system is reduced from S1 to 2,. 

In the Appendix, P. G. Drazin describes simply the qualitative structure of this 
problem, and other problems with the same symmetries, without technical detail. 

1. Introduction 
In this paper we are concerned with the linear stability of laminar flow in a straight 

pipe whose cross-section is an ellipse. This is an interesting problem because in the 
extreme case when the ellipticity e decreases towards zero the cross-section becomes 
more circular and it is generally believed that circular pipe flow is stable to infinitesimal 
disturbances so that no finite critical Reynolds number exists. In the other extreme case 
when the ellipticity e approaches the value 1 from below Hocking (1977) has shown 
that the stability characteristics of the flow are a regular perturbation from those for 
plane Poiseuille flow which has a critical Reynolds number of about 5772. He found 
that the critical Reynolds number increased as e decreased below 1 by an amount 
proportional to (I  - e)’/2. 

Thus, elliptic pipe flow is stable when e is sufficiently small and unstable when e is 
close to 1 ; it seems likely therefore that there will exist a critical value of e,  namely e,, 
such that when e > e, a critical Reynolds number will exist and when e < e, then there 
will be no such critical Reynolds number. In an earlier paper by one of the present 
authors (Davey 1978; hereinafter referred to as D) an attempt was made to solve the 
linear stability problem for small values of e by a regular perturbation away from 
circular pipe flow; however, that paper contained two serious errors. 

The first error in D is rather an elementary one: the author kept the length of one 
of the axes, a, of the ellipse fixed and allowed the other axis of length b to be a function 

t With an appendix by P. G.  Drazin. 
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of a and the ellipticity e.  However, he used a only as a lengthscale for defining the 
Reynolds number and the non-dimensional axial wavelength a of the disturbance. This 
choice of lengthscale is inappropriate because as e varies it does not accommodate the 
change in the size of the cross-section of the pipe. 

The second error in D is more serious although at the same time it is also rather 
subtle and not easy to detect. The author forgot that, except for the rather special 
axisymmetric mode, all the eigenvalues of the linear stability problem for circular pipe 
flow are double eigenvalues because each eigenvalue has associated with it two 
eigenfunctions, one associated with right-handed ‘swirl’ in the pipe and one associated 
with left-handed ‘swirl’ in the pipe. Now the right-hand side of (19) of D contains 
terms associated with both ‘swirl’ directions when the mode number n is such that 
n-2  = -n, i.e. when n = 1 which is the most important case of all. This means that 
the adjoint theory used by D to determine the effect of the ellipticity e at leading order 
on the complex wave speed c of the disturbance where 

c = c, +e2cl + O(e4), 

(see (16e) in Q2), i.e. to determine the coefficient cl, is erroneous because the author 
could have used two different adjoint functions which would have led to two different 
values for c,. The mathematics in D breaks down completely at this stage. 

We shall show that the true situation, for the important case n = 1, is that if we allow 
the lengths of both axes of the ellipse to vary by small amounts E,, eb say, so that for 
example 

then to leading order in e,,eb the expansion for the complex wave speed c takes the 
form 

a2 = at( 1 + E , ) ,  b2 = ai ( l+ eb) ,  

c = co + (CIl * ClZ) + ( q 1  f c12) Eb, 

c = co + (€.a + € b )  c11 k ( E ,  - c b )  c12’ 

which may also be written in the form 

(1) 

In the above two equations c1 = cll.& c12 and the reason why c, can have two values is 
because there are two adjoint functions and c1 is the solution of a quadratic equation 
which has the matrix form 

A B  a+ 
( B  A )  ( a )  = ‘’ (::)’ 

where {a+, a_}’ is the associated eigenvector. (This equation is predicted by the general 
theory of the Appendix to this paper by P. G. Drazin.) 

What we are interested in is the change in the stability characteristics of the flow due 
to the effect of the ellipticity on the shape of the cross-section of the pipe. We wish to 
completely eliminate size effects from both our analysis and our numerical calculations. 
It is clear from (1) that if we choose E ,  = eb, so that the pipe is still circular but with 
a different radius, then the c,, term will be absent and so the coefficient cll is associated 
solely with size effects. On the other hand, if we choose e, = -eb in (l), so that the 
cross-sectional area of the pipe is preserved (at least to leading order), then the cll term 
will be absent and so the coefficient c12 is clearly associated solely with shape effects. 

So, in our analysis which is contained in $2,  we carefully choose E ,  = -eb = $e2 so 
that the change in the complex wave speed c is due solely to shape effects. The choice 
for means that at least to order e2:  ( i )  the ellipticity of the pipe is e ;  (ii) the 
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circumference and also the cross-sectional area of the pipe remain the same, and (iii) the 
volume flux down the pipe remains the same. 

Because D chose E ,  = 0 and eb = e2 his c,  contained an unwanted size contribution cll, 
essentially due to the fact that the mean radius of the pipe had increased by a factor 
(1 +ie2) and so therefore had the wavenumber a and the Reynolds number R. 
Moreover, because he forgot that c is a double eigenvalue, he did not know about c12 
so it is entirely missing from his paper. So the c1 which D calculated was due solely to 
size effects and in fact since c = c(a, R) 

ac ac 
Sc = -&a+-SR, 

aa aR 

and Sa - ie'a and SR N ie2R so it follows that the c, = cll which D laboriously 
calculated is nothing more than 

4 1 (a aa + R &) . 
The only other fluid dynamical paper which we know of which deals with the 

perturbation of a double eigenvalue problem together with its attendant double/matrix 
adjoint theory is by Moore & Saffman (1975) who consider the instability of a straight 
vortex filament which can support disturbances with both left- and right-helicity ; see 
also Schiff (1968, chap. 8). 

Our objective in 52 is to show analytically that the double eigenvalue c, for circular 
pipe flow splits into two separate eigenvalues co e2c12 for the elliptic problem. In Q 3 
we calculate c,, numerically for a wide range of values of a, R and we find that the 
imaginary part of c,, is non-zero. Hence, the effect of the ellipticity must be to make 
the flow less stable. 

2. Linear stability of flow in a pipe with small ellipticity 
The steady flow whose stability we wish to examine is that of a viscous incompressible 

fluid flowing along a straight pipe of elliptic cross-section under the action of a 
constant pressure gradient. The length of the semi-major axis of the elliptic cross- 
section is a and the length of the semi-minor axis is b, so that a > b. As mentioned in 
the Introduction it is convenient to let 

a2 = ai(1 +:ez), b2 = ai(1-1 2e )I (3) 

so that for small values of the ellipticity e the square of the ellipticity of the cross- 
section is e2 with an error term of order e4. (In what follows we shall never need to 
consider any terms of order e'.) 

We suppose that the centreline speed of Poiseuille flow along the pipe is U,, so that 
the constant pressure gradient needed to maintain the flow is 

-2pvu, >+> , (1 d )  
where v is the kinematic viscosity of the fluid and p is its density. 

We choose a,, U, and a,/U, as the characteristic scales of length, speed and time, 
respectively, with which we make our quantities non-dimensional. The reference 
pressure is pvU,/a. We use non-dimensional Cartesian coordinates (x, y ,  z) with the 
x-axis in the direction of the basic flow down the pipe and with the y- and z-axes in the 
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directions of the major and minor axes respectively, so that the boundary of the pipe 
is given by 

(l-ie2)y2+(l+&2)z2= 1, (4) 
and the steady flow down the pipe is 

U = 1 -(1 -+ez)y2-(1 +fre2)z2. 

We shall also use polar coordinates (r, 8) in the cross-sectional plane defined by 

( 6 )  

so that (x,r,B) are cylindrical polars and thus the boundary of the pipe (4) may be 
written as 

y = rcos0, z = rsin0, 

r2 = (1 -+e2cos20)-1, (7) 
U = 1 - r2 - $ezrz cos 28. (8) 

We shall consider only linear stability theory and suppose that a disturbance will 
grow or decay temporally without spatial modulation. Hence it suffices to express the 
fluid velocity Uo(u,, ur, ue) and the pressure (puUo/a) 9 in the form 

and ( 5 )  becomes 

(9) 

(10) 

In (9), E is a measure of the amplitude of the disturbance compared with that of the 
basic flow and 

E = exp {ia(x - ct)}, 

so that the disturbance has wavenumber a in the x-direction, wave speed c, and 
temporal growth rate act, where 

Also, it should be understood that complex conjugates are to be added to the right- 
hand sides of (9) to cancel the imaginary terms. 

If (9) and (10) are substituted into the Navier-Stokes equations and the continuity 

1 
u, = U+ eEu(r, 0) + O(e2), 

u, = eEv(r, 8) + O(c2), 

ue = eEw(r, 0) + O(e2), 

9 = P + eEp(r, 6 )  + O(e2). 

c = c,+ic,. (1 1) 

equation then the terms of order-e yield 

I 
I 

(9 ++I u - iap = iiaRe2r2 cos 28u - 2Rr( 1 - fre2 cos 28) v - Re2r sin 2ew, 

aP 2 a w  
ar r2 ae 

1 aP 2 av 
r a0 r2 ae 

9 v  - - = iiaRe2r2 cos 28v + - - , 

9w--- = $zRe2r2cos28w---, 

av  v I aw 
and -+-+iau+-- = 0, 

where R = Uoao/v is the Reynolds number and the operator 2 is defined by 

ar r r a6' 

a2 - iaR( 1 - r2 - c). 9=-+ -_-- +--- a 2  l a  1 l a 2  
ar2 r ar r2 r2 M2 
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The boundary conditions are 

I u = v = w = 0 when r = ( 1  -ie2 cos 28)-1'2, 

We now expand the variables u, v, w and p and also the eigenvalue c in powers of 
e2 as follows: 

u = uo + e2u1 + O(e4), 

v = 0, + e2vl + O(e4), 

w = w, + e2w, + O(e4), 

P = Po + e2p, + O(e4), 
c = c, + e2c1 + O(e4). 

( 1 6 4  

(16b) 

(16c) 

( 1 6 4  

(16e) 

If we substitute these expansions into (12)-(15), clearly the leading-order terms u,, u,, 
w,, po and c, will be a linear combination of the eigenmodes of the linear stability 
problem for circular pipe flow. A typical such eigenmode is of the form 

{u,, 0 0 ,  w,, Po} = { q r ) ,  qdr), W,(r>,Po(r)> exp (in@, (17) 

where n is an integer and u,, v,, w,, po and c,, are the solutions of the linear ordinary 
differential Orr-Sommerfeld system 

L + l / r 2  2Rr 0 

0 2in/r2 L 
ia D +  l / r  inlr 0 PO 

( 1 8 )  
0 L 

where D = d/dr and the operator L is defined by 

d2 1 d l+n2  
L--+--- dr2 dr ( - r2 +a')--iaR(l -r2-c,). 

The boundary conditions for ( 1 8 )  and (19) are (see Batchelor & Gill 

U, = U, = W ,  = 0 when r = 1 ,  
ins, = inVo-wo = inw,+V, = inp, = 0 when r = 0; 

962) 

also iio, v,, W ,  and po must be finite as r+ 0. Equation ( 1 8 )  subject to the boundary 
conditions (20) can be solved numerically to determine u,, v0, w,, po and the eigenvalue 
c, for an arbitrary choice of the integer n;  see, for example, Lessen, Sadler & Liu (1968) 
and also Salwen & Grosch (1972). Note that the boundary condition at r = 0 takes 
rather special forms when n = 0 or 1 ,  but that otherwise it reduces to 

_ _ _  
u, = v, = w, = P o  = 0. 

In general the least damped disturbances are those with n = 1 (but see Gill 1973) in 
which case the boundary condition at r = 0 becomes Uo = Do + iw, = po = 0, with Vo and 
W ,  finite. 

Usually, for such a linear stability problem, each eigenvalue will have associated with 
it a unique eigenfunction, the eigenvalue will be single and the stability of each 
eigenmode, (17) with a specific value of n, may be considered separately. It is at this 
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stage that D contains the second error: not taking into account that when n =k 0 all the 
eigenvalues of (1 8)-(20) are double eigenvalues so that for each eigenvalue co there are 
two associated eigenfunctions being (17) and also 

(21) {uo, vo, wo, Po}  = {uo(r), Do(r), - Wo(r),Po(r)} exp ( - ins 
which is like (17) but with the 'swirl' in the pipe being in the opposite direction: note 
that (12k( 15) are invariant under the transformation 0 + - 0, w + - w. 

So at leading order eo the eigenfunction associated with the nth mode is a linear 
combination of (17), (21) so that to evaluate u,, u,, w,, p1 and c1 at order e2 we must 
take, finally, 

{'O? vo, wo, Po} = a+{Qo(r), w9, wo(~),Po(r)> exp (inel 

+a-{uo(r), uo(r), - No(r),p0(r)} exp ( - i n 0  (22) 

From (12), (13), (16) and (22) the equations for ul, v,, w,, p1 and c, at order e2 are 

(% + i) u1 + 2Rrv, - iap, = a+{iaR($r2 cos 28- c,) a. 

and 

+ Rr cos 20D0 - Rr sin 20W0} ein6 

+ a-{iaR(+r2 cos 20- c,) Uo + Rr cos 2BD0 

+ Rr sin 20W0} ecine, 

2 aw ap 
r2 ae ar % 0, - - - -2 = a+{iaR(ir2 cos 20 - c,) uo} ein6 

+ a-{iaR(;r2 cos 20- el) Do} e-in6, 

2 av 1 ap 
r2 a0 r a0 

% w1 + - 2 - - 2 = a+{iaR(+r2 cos 20 - c,) w0} eine 

+ a-{ - iaR(+r2 cos 20 - c,) W o }  ecin6, (23 c) 

where the operator % is the same as 3, see (14), but with c replaced by c,. Also, from 
(15), (16) and (22) the boundary conditions for u,, v,, w1 and p1 are 

} when r =  1,) (uI,vl, wl) = -:cos28{a+{u",,ii',, ~ ~ ) e ~ ~ ~ + a - ( u , , v , ,  - ~ ~ b ) e - ~ ~ '  4 4  

where a prime denotes differentiation with respect to r.  
The 0-dependence of the forcing terms on the right-hand sides of (23) and (25) may 

be written as linear combinations of exp { k in0}, exp {i( f n + 2) 0) and exp {i( & n - 2) 0} 
so we can seek a solution for ul, vl, w,, p1 and c, which is a linear combination of these 
six quantities. When we seek those parts of the solution which are proportional to 
exp (in0) and exp (-in@, the partial differential operator for the homogeneous part of 
(23) becomes the same as the Orr-Sommerfeld operator in (18) and so has {ao, u0, wo,p0} 
and {ao, Do, - wo,po} as eigenfunctions respectively. Hence we can use double adjoint 
theory to obtain two homogeneous linear equations for a+ and a_. For these two 
equations to have non-trivial solutions the determinant of the coefficient matrix must 
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be zero, see (2), and so c, is the solution of a quadratic equation. Thus we obtain the 
leading-order effect of the ellipticity on the rate of decay of the disturbance. 

However, as mentioned in 9 1, it is only when n-2 is as small as --n, that is when 
n = 1, that the two simultaneous equations for a+ and a- are non-degenerate. When 
n =l= 1 the two equations both imply that c, = 0 so that the effect of the small ellipticity 
e on the stability of the flow is only 0(e4)  for these cases. Only when n = 1 is c, + 0 so 
that the ellipticity affects the stability at O(e2). Consequently, hereinafter, we restrict 
attention to the case n = 1. 

So, now setting n = 1, it follows from (23) and (24) that the vector equation for that 
part of the solution for ul, v,, w, and p , ,  which is proportional to exp{iB} is 

L+ l / r2  2Rr 0 
-2i/r2 -D 

= - iaRc, a+ + +iaRr2a- 
0 L 
0 2i/r2 

ia D + l / r  i/r 0 P1 PO 
vo - iwo 

+aRra- ( ) , (26) 

and this equation will only have a solution if the right-hand side is orthogonal to the 
solution space of the left-hand operator. In order to determine this condition we must 
find the solution of the associated problem, which is adjoint to the operator of the left- 
hand side of (26), namely 

L +  l/r2 0 0 ia 

(27) 

-101 D + l / r  -i/r 0 P a  

with boundary conditions 

(28) 
u , = v , =  w , = O  when r =  1, . 

u, = v,-iw, = p a  = 0 when r = 0, 1, 
also, u, and w, must be finite as r + 0. 

We solve (27) and (28) numerically and check that the new value which we obtain 
for c, is close to the corresponding value found from the Orr-Sommerfeld formulation 
(18)-(20). Having found u,, v,, w, and p a  we now left-multiply (26) by 

{rua, rva, rwa, rpJT 

and integrate from r = 0 to r = 1 to obtain 

where 
Ba- = c, a+, 

i 
8aR 

a 1: y3(uO u, + v0 v, - W, w,) dr - r2(vo - iw,) u, dr + __ [u', U; - wh w&=~ 

B =  fl 

r(@,, u, + Vo va + w0 w,) dr Jo 
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Because we have carefully chosen the lengths of the axes of the elliptical cross-section 
to vary with e to eliminate size effects at order e2 then both c,, and A are zero, see 8 1. 

Now remember that we obtained (29), (30) by focusing our attention on that part of 
the solution for u,, p,, w, and p1 which is proportional to exp {if?}. In an exactly similar 
way, by concentrating on that part of the solution which is proportional to exp { -if?}, 
and using the other eigenfunction and the other adjoint function, for which the signs 
of w,, and w, are reversed respectively, we obtain 

Ba, = clap. (31) 

c1 = B, a, = a_ and c, =-B, a+ = -a-, (32) 

Equations (29), (31) yield the two solutions 

so that the temporal growth rate of the disturbance is given by 

(T = Re { - ia(c, + e'c,)} + 0(e4) 

= acoi _+ e'aB, + 0(e4), (33) 
where B = B, + iBi. 

Since numerical calculations indicate that Bi is non-zero it follows immediately from 
(33) that the effect of the ellipticity is to destabilize the flow; the double eigenvalue 
when e = 0 splitting into two separate eigenvalues for e > 0 with one less stable and the 
other more stable. It is also clear from (32) that in the limit as e $0  the two fundamental 
eigenmodes of the elliptical problem are each associated with one of the two axes of the 
ellipse. 

Once c, has been found there is no difficulty in principle in successively calculating 
higher-order terms in (1 6 a-e), such as the coefficient c2 of the term of order-e4 in (1 6 e). 
In practice, however, this is a formidable task because the number of ordinary 
differential equations which must be solved numerically increases by an order of 
magnitude every time an extra term in each of (16a-e) is required. (Also, the definitions 
of the lengths of the axes of the ellipse would need refining so that the ellipticity was 
still e to 0(e4).) 

3. Numerical results 
Numerical solutions of the Orr-Sommerfeld equation (18) and the adjoint equation 

(27) were obtained in exactly the same way as described in D. Runge-Kutta integration 
was used together with a shooting method and orthonormalization so that calculations 
could be done for large values of aR. 

To integrate (18) and (27), which are both of seventh order, they were first reduced 
to sixth-order systems by differentiating the fourth row of the matrices and subtracting 
the result from the second row so that the new second row is a first-order differential 
equation instead of second order. Initially, near r = 0, it is necessary to use a power 
series expansion before the Runge-Kutta integration is begun. For further details the 
reader is referred to D. 

We have already shown analytically in $2 that the effect of making the pipe elliptical 
is destabilizing; the numerical results indicate that cli is not zero. The secondary aim 
of the numerical results is to obtain an estimate for the critical value of e, i.e. the value 
above which there will be a critical Reynolds number but below which the flow will be 
stable. A necessary preliminary to achieving this aim is to determine, given a large fixed 
value of R as in a laboratory experiment, for which value of 01 and for which type of 
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R 

1000 
2 500 
5 000 

10 000 
25 000 
50 000 

100 000 
co 

a 

0.75398 
0.23721 
0.1 1909 
0.05961 
0.02385 
0.01 193 
0.00596 
- 

- Coi lC1zi  

0.781 39 
0.61530 
0.52730 
0.50245 
0.495 23 
0.494 18 
0.493 92 
0.493 8 

TABLE I .  For given R and n = 1 we show the smallest possible value of -coi/clli = e i in  as defined 
by (34) and the corresponding value of a; to a very rough first approximation the flow is unstable if 
e > emin. 

disturbance (centre, wall or distributed mode) will the effect of the ellipticity be most 
likely to lead to instability? 

To answer this question, for each value of R shown in table 1 we calculated c, and 
c1 for a very wide range of values of a, and also for the first ten centre modes, wall 
modes and distributed modes. For each value of R we then found the smallest possible 
value of -coi/cli  as a was varied, each kind of mode (centre, wall and distributed) 
being considered. It is these values of -coi /c l i  which are shown in table 1. (See (32), 
(33); we choose the cli which are positive.) 

The reason why we are particularly interested in the smallest possible value of 
-coi /c l i  is as follows: given R, if we ignore the terms of order-e4 in (33) then a 
disturbance will be unstable if coi+e2cli > 0, i.e. if e > emin where, as a first 
approximation, we define 

ekin = smallest possible value of -coi /c l i  for R fixed. (34) 

Since cot < 0 and cli  > 0 then emin will be real. 
The first fact which we were able to establish numerically was that the centre modes 

are only very slightly affected by the ellipticity of the boundary. This is because the 
centre modes are concentrated near the centre of the pipe so one would not expect them 
to be affected very much by the slight distortion of a distant boundary. Since the wall 
modes are concentrated near the boundary one would expect them to be affected much 
more by the ellipticity than the centre modes. So, although the centre modes are less 
damped than the wall modes for circular pipe flow, all the values of - coi/cli  found for 
the centre modes are so very large that we shall not discuss these modes any further. 

Next, keeping R fixed and setting a = 1, we calculated -coi /c lZ for the ten least- 
stable wall modes, we then allowed a to vary over a very wide range for each of the ten 
modes. We found that -coi /c l i  was always a minimum for the distributed mode 
associated with one of the least-damped wall modes, the key value of a being very 
small. (A wall mode gradually changes into a distributed mode when a becomes 
sufficiently small.) Table 1 contains the principal results which we obtained (for the 
case n = 1 of course). The columns headed - coi/cli  are the smallest possible values as 
a varies, with R fixed, so these columns could also have been headed eLin as defined 
by (34); the column which is headed a are the corresponding wavenumbers. 

We see from table 1 that emin is a monotonically decreasing function of R with a 
finite limit as R-+ co; this limiting value was found from the convergence of algebraic 
and exponential Shanks transforms. This means that, given R, the flow will be unstable 
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if e > emin. Alternatively it means that given e = emin, R will be the critical Reynolds 
number and CL will be the critical wavenumber at the ‘nose’ of the neutral-stability 
curve. Note that when R is large a is also a monotonically decreasing function of R, 
in fact CL - R-l and the critical wavelengths are much larger than the mean radius of 
the pipe. 

It is clear from table 1 that we are concerned with values of e2 of about 0.5 and we 
can only reallyjust call this small, and so the justification for neglecting terms of order- 
e4 in (33) is at best plausible. Hence, we must remember that (34) only gives us a very 
rough first approximation to the relation which must hold between the Reynolds 
number R and the ellipticity e for a neutral disturbance to exist. What we can say with 
certainty is that since c1 = f B, Bi =I= 0, the effect of the ellipticity is to make the flow 
less stable. 

In general we found that the contributions to cli from the two integrals in the 
numerator of (30) were negative and of the same order of magnitude, so that the last 
term in the numerator dominates to make the value of cli positive. This last term also 
dominates the value of clr, which is negative, so that one effect of the ellipticity on the 
destabilizing solution is to decrease the phase speed. For example, if R = 100000 and 
a = 0.00596, then c, = 0.5720-0.3311i, c1 = -0.3089+0.6703i and the three con- 
tributions to c1 from (30) are, in order, 1.6200 - 0.8 174i, 1.4014 - 0.4763i and 
-3.3302+ 1.96391. 

4. Concluding remarks 
We have examined the linear stability of flow in a straight pipe whose cross-section 

is an ellipse of small ellipticity e by considering the flow to be a perturbation away from 
flow in a circular pipe of the same size. We have shown analytically that to leading 
order the effect of the ellipticity is to make the flow less stable and that, given e and 
a fixed Reynolds number R, as in a laboratory experiment, the mode which is most 
likely to lead to instability is the distributed mode associated with one of the least- 
damped wall modes for the case n = 1 ; the key value of a which maximizes the effect 
of the ellipticity being of order R-l when R is large. 

Moreover, we have obtained a very rough estimate which plausibly suggests that 
flow in an elliptic pipe will be unstable and a critical Reynolds number will exist if e2 
is larger than about one-half, that is, if the aspect ratio a /b  of the pipe is larger than 
about 1.5. This value may be compared with the value of 3.2 found by Tatsumi & 
Yoshimura (1990) for the critical aspect ratio for the stability of flow in a rectangular 
duct. It is interesting to note from their paper that contours of constant axial velocity 
for the basic laminar flow are almost ellipses. 

There are two other interesting points worthy of note. First, the fact that c12 is non- 
zero only for n = 1 implies that the effect of the ellipticity only occurs at order-e* for 
other values of n. In a way this result supports the long-held conviction that n = 1 is 
also the most important mode as regards the stability of circular pipe flow. Secondly, 
in the limit as e J. 0 the fundamental eigenmodes for the elliptical problem corresponding 
to {a+, a-} = (1,l) and (1, - 1) have associated velocity fields proportional to 

{go(r) cos 19, uo(r) cos 0, iw,(r) sin S} +c.c., 

{Uo(r) sin 0, ug(r) sin 0, - i@,,(r) cos S} +c.c., and 

respectively; so the two eigenmodes are each associated with different axes of the 
ellipse. 



Stability ofJEow in a nearly circular elliptic pipe 367 

A numerical study of the linear stability of the elliptical pipe flow problem for finite 
ellipticity is currently in progress by Dr R. R. Kerswell and one of the authors (A. D.) ; 
preliminary calculations have confirmed the small-ellipticity results presented in 9 3 of 
this paper. 

The authors wish to express their deep gratitude to Professor P. G. Drazin for his 
continual interest and encouragement throughout the preparation of this paper. We 
also thank the referees for their many helpful comments. 

Appendix. The structure of the stability problem 
By P. G. Drazin 

School of Mathematics, University Walk, Bristol BS8 1 TW, UK 
The main paper presents quantitative results for a specific problem which is one of a 
wide class of problems of hydrodynamic stability sharing the same symmetries. So it 
is useful to describe below the qualitative structure of the results in a general way with 
no technical detail. This illuminates the paper and points the way to solve other 
problems. 

The dimensionless problem of the development of all initial perturbations of a basic 
flow in an elliptic pipe is, for given values of the Reynolds number R and eccentricity 
e, not only invariant under the continuous group of all dimensional scalings 
(summarized in 6 l), but also is invariant under the continuous group of all translations 
in the axial direction and under the group Z ,  of reversals of the axial coordinate x. 
Again, it is invariant under translations of time (but is only invariant under reversal of 
time if the fluid is inviscid). A particular perturbation may or may not possess these 
symmetries. 

For a circular pipe (e = 0) the problem is axisymmetric, i.e. invariant under all 
transformations belonging to the continuous group S1 of rotations about the axis and 
the group 2, of reversals of the azimuthal angle 13. However, for an elliptic pipe (e =k 0) 
the problem is symmetric only under reflections 2, x 2, in the major and minor axes 
of the ellipse, and under interchange of the major and minor axes. 

The development of perturbations of the basic pipe flow is modelled as a set of 
partial differential equations and boundary conditions, which is plausibly equivalent to 
an infinite set of nonlinear ordinary differential equations, say 

da 
- =f lu ,  R, e). 
dt 

For example, a perturbation of the velocity might be represented as a spectral 
expansion in the set of normal modes ei(as+no)um(r, a, n, R, e) of the linearized problem 
with complex amplitudes aamn for real a, m = 1,2, . . . and n = 0, f 1 ,  2, . . . , where urn 
is the mth radial eigenfunction, such that a has components aamn to specify the 
perturbation. The invariance of the problem under axial translations then implies that 

for some matrix g depending on a only through the squares of the moduli laamn12 of 
the components of a. 

Now the dimensionless form of equation (7) of the pipe wall is 

r = 1 + e2F(eZi8, ecZi0, e'), 
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and of equation (8) of the basic flow is 

A .  Davey and H. Salwen 

u = 1 - y 2  + e2r2G(eZio, ePzie), 

for certain functions F, G. As in the main paper take m = 1 (because it is plausible that 
all modes with m 2 are very stable). It is convenient to omit explicit mention of 
a, m ,  R. Then 

for n = 0, & 1, & 2, . . . . Also, it is well known that the linearized problem for a circular 
pipe gives the form 

as e, la1 --f 0,  where c, = g, by symmetry in 0. Therefore 

for some complex interaction coefficients A,, Bn, (dependent on a, R) because F, G 
depend on ekziO only. By symmetry, A _ ,  = A,, B-,, - p  = Bn,p .  

The modes with n = f 1 are likely to be the most unstable for smallish values of e 
because they are known to be the least stable when e = 0. So it is plausible to consider 
only the interaction of these two modes, for which (A 3) reduce to 

I = (T, a, + e2(Aa, + Ba-,), 
dt 

da-, 
~ = g1 a_, + e2(Ba, + Aa-,), 

dt 

approximately, where CT, = -iac,, say, A _ ,  = A,,  = A ,  say, and Bl,-l = B-,, ,, = B, 
say, On taking normal modes with a, = a,, a- = a_, K epiEct and c = co + e2c1 + O(e4) 
as e --f 0, we have equation (2) in the notation of the main paper. 

These simple ideas show how to anticipate the structure of the detailed calculations 
when e, a are not small, and also the structure of other stability problems with the same 
symmetries. They were originally adumbrated in a referee's report of this paper, 
independently, after the submission but before the publication, of similar ideas by 
Guckenheimer & Mahalov (1992) on the weakly nonlinear stability of a ~ a m ~ l t o n i a n  
system. In this paper the system is strongly dissipative, but the other symmetries are the 
same as those assumed by Guckenheimer & Mahalov, so their paper is also helpful in 
understanding the structure of the weakly nonlinear stability of flow in an elliptic pipe. 

Note added in Proof. It has been pointed out to us by Professor J. T. Stuart that 
equations (A4) of the Appendix are related to the equations which govern the 
Benjamin-Feir instability and the Eckhaus instability, both of which constitute 
examples of side-band instabilities. 

The relationship arises as follows : in the Benjamin-Feir and Eckhaus side-band 
mechanisms, the harmonic, exp (2ikx) plays a central nonlinear role in causing an 
interaction between two side-band waves neighbouring exp (ikx). In the present linear 
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problem, however, the role of that harmonic is taken on by the cos2B term in the 
boundary description (8); it is this term which causes the interaction between the two 
basic modes (17) and (21) of the present paper (with n = 1). 

For details the reader is referred to Stuart & DiPrima (1978), equations (2.8) and 
(3.13), to which equations (A4) are related. 
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